Author:
View More View Less
• 1 College of Sciences, North China University of Technology, Beijing, 100144 China
• | 2 School of Mathematical Sciences, Beijing Normal University, Beijing, 100875 China
Restricted access

Abstract

In this paper, the smallest number M which makes the equality
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$K_n (W_2^{L_r } (T),MW_2^{L_r } (T),L_2 (T)) = d_n (W_2^{L_r } (T),L_2 (T))$$ \end{document}
valid, is established and the asymptotic order of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$K_n (W_2^{L_r } (T),W_2^{L_r } (T),L_q (T)),1 \leqslant q \leqslant \infty$$ \end{document}
, is obtained, where
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$W_2^{L_r }$$ \end{document}
(T) is a periodic smooth function class which is determined by a linear differential operator, Kn(·, ·, ·) and dn(·, ·) are the relative width and the width in the sense of Kolmogorov, respectively.
All Time Past Year Past 30 Days
Abstract Views 1 1 0
Full Text Views 0 0 0