Authors:
Assal Miloud College of Science, Department of Mathematics, King Khalid University, Abha, 9004 KSA

Search for other papers by Assal Miloud in
Current site
Google Scholar
PubMed
Close
,
Rahmouni Atef Faculty of Sciences, Laboratoire Analyse mathématiques et Applications, Tunis El Manar University, Tunis, 2092 Tunisia

Search for other papers by Rahmouni Atef in
Current site
Google Scholar
PubMed
Close
, and
Taieb Ahmed Faculty of Sciences, Laboratoire Analyse mathématiques et Applications, Tunis El Manar University, Tunis, 2092 Tunisia

Search for other papers by Taieb Ahmed in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

In this paper, we are interested in the Laguerre hypergroup
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{K} = [0,\infty ) \times \mathbb{R}$$ \end{document}
which is the fundamental manifold of the radial function space for the Heisenberg group. So, we consider the generalized shift operator generated by the dual of the Laguerre hypergroup
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\bigcup\limits_{j \in \mathbb{N}} {\left\{ {(\lambda ,\mu ) \in \mathbb{R}^2 :\mu = \left| \lambda \right|(2j + \alpha + 1),\lambda \ne 0} \right\} \cup \left\{ {(0,\mu ) \in \mathbb{R}^2 :\mu \geqslant 0} \right\}} ,$$ \end{document}
by means of which the maximal function is investigated. For 1 < p, the Lp()-boundedness and weak L1()-boundedness result for the maximal function is obtained.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

For subscription options, please visit the website of Springer Nature.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)