Author:
G. Oniani Department of Mathematics, Akaki Tsereteli State University, Tamar Mepe St. 59, Kutaisi, 4600 Georgia

Search for other papers by G. Oniani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

It is proved that for any dimension n ≥ 2, L(ln+L)n−1 is the widest integral class in which the almost everywhere convergence of spherical partial sums of multiple Fourier-Haar series is provided. Moreover,it is shown that the divergence effects of rectangular and spherical general terms of multiple Fourier-Haar series can be achieved simultaneously on a set of full measure by an appropriate rearrangement of values of arbitrary summable function f not belonging to L(ln+L)n−1.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

For subscription options, please visit the website of Springer Nature.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)