Author:
Д. Меняшов ИМ. В. А. СТЕКЛОВА А Н СССР Литература МАТЕМАТИЧЕСКИЙ ИНСТ ИТУТ УЛ. ВАВИЛОВА 42 117 333 СССР, МОСК ВА УЛ. ВАВИЛОВА 42 117 333 СССР, МОСК ВА

Search for other papers by Д. Меняшов in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Numerical series
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop \Sigma \limits_{n = 0}^\infty u_n$$ \end{document}
with partial sumssn are studied under the assumption that a subsequence
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left\{ {S_{n_k } } \right\}_{k = 0}^\infty$$ \end{document}
of the partial sums is convergent. Then a sequence {ηk} is chosen, by means of which a majorant of the termsun is constructed. Conditions on {nk} and {ηk} are found which imply the (C, 1)-summability of the series∑ un (Theorem 1). In the meanwhile, it is proved that the (C, 1)-means in Theorem 1 cannot be replaced by (C, α)-means, if 0<α<1 (Theorem 2). On the other hand, if the assumption in Theorem 1 is not satisfied, then in certain cases the series∑ un preserves the property of (C, 1)-summability (Theorems 4 and 5), while in other cases it is not summable even by Abel means (Theorems 3 and 6).
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

For subscription options, please visit the website of Springer Nature.

Analysis Mathematica
Language English
Size B5
Year of
Foundation
1975
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3852 (Print)
ISSN 1588-273X (Online)