A matematikai megismerés, a számfeldolgozás folyamatának feltérképezése az elmúlt évtizedekben gyors ütemben elindult, mégis számos kérdés továbbra is nyitott. A fejlődési szempont és különösen a matematikai képességek tipikus fejlődésének vizsgálata sajnos viszonylag háttérbe szorult, pedig ez mind gyakorlati, mind elméleti szempontból releváns téma a kognitív pszichológia számára. Napjaink egyre inkább elfogadott nézete szerint a tipikus fejlődésmenet megismerése nélkülözhetetlen az atipikus fejlődés, így a fejlődési diszkalkulia megértéséhez, továbbá a felnőtt számfeldolgozás olyan modelljeinek megalkotásához, amelyek fejlődési szempontból is plauzibilisek.
Összefoglaló tanulmányunkban ezért a tipikus fejlődésre fókuszálunk, amelyben kitüntetett jelentőségű a veleszületett számérzék, illetve a biológiailag elsődleges matematikai képességek kibontásának, kiterjesztésének időszaka, az óvodáskor. A számnevek elsajátításával lehetővé válik a mennyiségek pontos reprezentációja, a számlálás, és alapvető számtani műveletek elvégzése nagyobb számkörben. A számfogalom kialakulásával, a számok terén szerzett tapasztalatok bővülésével a formális matematikatanulás első éveiben további mérföldköveit találjuk a számolási képességek fejlődésének. A számok reprezentációját végző mentális számegyenes egyre pontosabb, a számtani műveletek elvégzése során a kisiskolások egyre inkább számtani emlékezetükre támaszkodnak és egyre hatékonyabban alkalmazzák a rendelkezésükre álló számolási stratégiákat.
1. Ashcraft, M. H. (1995): Cognitive psychology and simple arithmetic: A review and summary of new directions. Mathematical Cognition, 1, 3–34.
2. Baroody, A. J. (1999): The roles of estimation and the commutativity principle in the development of third-graders’ mental multiplication. Journal of Experimental Child Psychology, 75, 157–193.
3. Briars, D. J., Siegler, R. S. (1984): A featural analysis of preschoolers’ counting knowledge. Developmental Psychology, 20, 607–618.
4. Brown, J. S., Burton, R. B. (1978): Diagnostic models for procedural bugs in basic mathematical skills. 5. Cognitive Science, 2 (2), 155–192.
5. Bryant, P., Christie, C., Rendu, A. (1999): Children's understanding of the relation between addition and subtraction: Inversion, identity, and decomposition. Journal of Experimental Child Psychology, 74, 194–212.
6. Butterworth, B. (1999): The Mathematical Brain. London, Macmillan.
7. Butterworth, B. (2005): The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46 (1), 3–18.
8. Butterworth, B., Girelli, L., Zorzi, M., Jonckheere, A. R. (2001): Organisation of addition facts in memory. Quarterly Journal of Experimental Psychology, 54A, 1005–1029.
9. Butterworth, B., Marchesini, N., Girelli, L. (2003): Organisation of multiplication facts in memory: Developmental trends. In: A. J. Baroody, A. Dowker (eds), The Development of Arithmetical Concepts and Skills: Constructing adaptive expertise. Mahwah, NJ, LEA, 189–202.
10. Camos, V. (2003): Counting strategies from 5 years to adulthood: Adaptation to structural features. European Journal of Psychology of Education, 18 (3), 251–265.
11. Campbell, J. I. D. (1994): Architectures for numerical cognition. Cognition, 53, 1–44.
12. Campbell, J. I. D., Graham, D. J. (1985): Mental multiplication skill: Structure, process and acquisition. Canadian Journal of Psychology, 39, 338–366.
13. Campbell, J. I. D., Gunter, R. (2002): Calculation, culture, and the repeated operand effect. Cognition, 86, 71–96.
14. Carpenter, T. P., Moser, J. M. (1982): The development of addition and subtraction problem solving skills. In: T. P. Carpenter, J. M. Moser, T. A. Romberg (eds), Addition and Subtraction: A cognitive perspective. Hillsdale, NJ, LEA, 9–24.
15. Chinn, C. A. (2006): The microgenetic method: Current work and extensions to classroom research. In: J. L. Green, G. Camilli, P. Elmore (eds), Handbook of Complementary Methods in Education Research. Washington, DC, American Educational Research Association, 439–456.
16. Cooney, J. B., Swanson, H. L., Ladd, S. F. (1988): Acquisition of mental multiplication skill: Evidence for the transition between counting and retrieval strategies. Cognition and Instruction, 5, 323–345.
17. Csépe Valéria (2005): Kognitív fejlődés-neuropszichológia. Budapest, Gondolat Kiadó.
18. De Brauwer, J., Verguts, T., Fias, W. (2006): The representation of multiplication facts: Developmental changes in the problem size, five, and tie effects. Journal of Experimental Child Psychology, 94 (1), 43–56.
19. Dehaene, S. (1992): Varieties of numerical abilities. Cognition, 44, 1–42.
20. Dehaene, S. (2003): A számérzék: miként alkotja meg az elme a matematikát? Budapest, Osiris Kiadó.
21. Dehaene, S., Cohen, L. (1997): Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219–250.
22. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., Tsivkin, S. (1999): Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.
23. De Rammelaere, S., Stuyven, E., Vandierendonck, A. (2001): Verifying simple arithmetic sums and products: Are the phonological loop and the central executive involved? Memory and Cognition, 29 (2), 267–273.
24. Dowker, A. (2003): Young children's estimates for addition: The zone of partial knowledge and understanding. In: A. J. Baroody, A. Dowker (eds), The Development of Arithmetic Concepts and Skills: Constructing adaptive expertise. Mahwah, NJ, LEA, 243–265.
25. Duncan, E. M., McFarland, C. E. (1980): Isolating the effect of symbolic distance and semantic congruity in comparative judgments: An additive-factors analysis. Memory & Cognition, 2, 95–110.
26. Ebersbach, M., Luwel, K., Frick, A., Onghena, P., Verschaffel, L. (2008): The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99, 1–17.
27. Ellis, S. (1997): Strategy choice in sociocultural context. Developmental Review, 17, 490–524.
28. Fayol, M., Barrouillet, P., Marinthe, C. (1998): Predicting arithmetical achievement from neuro-psychological performance: A longitudinal study. Cognition, 68, 63–70.
29. Fuson, K. C. (1988): Children's Counting and Concept s of Number. New York, Springer-Verlag.
30. Fuson, K. C. (1992): Research on whole number addition and subtraction. In: D. Grouws (ed.), Handbook of Research on Mathematics Teaching and Learning. New York, Macmillan, 243–275.
31. Fuson, K. C., Burghardt, B. H. (2003): Multi-digit addition and subtraction methods invented in small groups and teacher support of problem solving and reflection. In: A. J. Baroody, A. Dowker (eds), The Development of Arithmetic Concepts and Skills: Constructing adaptive expertise. Hillsdale, NJ, Erlbaum, 267–304.
32. Fuson, K. C., Kwon, Y. (1992): Learning addition and subtraction: Effects of number words and other cultural tools. In: J. Bideaud, C. Meljac, J-P. Fischer (eds), Pathways to Number. Hillsdale, NJ, Erlbaum, 283–306.
33. Fuson, K. C., Wearne, D., Hiebert, J., Human, P., Murray, H., Olivier, A., Carpenter, T. P., Fennema, E. (1997): Children's conceptual structures for multidigit numbers and methods of multidigit addition and subtraction. Journal for Research in Mathematics Education, 28, 130–162.
34. Geary, D. C. (1994): Children's Mathematical Development: Research and practical applications. Washington, DC, American Psychological Association.
35. Geary, D. C. (1995): Reflections of evolution and culture in children's cognition: Implications for mathematical development and instruction. American Psychologist, 50, 24–37.
36. Geary, D. C. (2000): From infancy to adulthood: The development of numerical abilities. European Child & Adolescent Psychiatry, 9 (2), 11–16.
37. Geary, D. C. (2004): Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 4–15.
38. Geary, D. C., Brown, S. C. (1991): Cognitive addition: Strategy choice and speed-of-processing differences in gifted, normal, and mathematically disabled children. Developmental Psychology, 27, 398–406.
39. Geary, D. C., Hamson, C. O., Hoard, M. K. (2000): Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology, 77, 236–263.
40. Geary, D. C., Widaman, K. F. (1992): Numerical cognition: On the convergence of componential and psychometric models. Intelligence, 16, 47–80.
41. Gelman, R., Gallistel, C. R. (1978): The Child's Understanding of Number. Cambridge, MA, Harvard University Press.
42. Gelman, R., Meck, E. (1983): Preschoolers’ counting: Principles before skill. Cognition, 13, 343–359.
43. Gibbon, J., Church, R. M. (1981): Time left: Linear versus logarithmic subjective time. Journal of the Experimental Analysis of Behavior, 7, 87–107.
44. Gordon, P. (2004): Numericalcognitionwithoutwords: EvidencefromAmazonia. Science, 306, 496–499.
45. Gyarmathy Éva (1998): A tanulási zavarok szindróma a szakirodalomban I. Új Pedagógiai Szemle, 10, 59–68.
46. Huntley-Fenner, G. (2001): Children's understanding of number is similar to adults’ and rats’: Numerical estimation by 5–7-year-olds. Cognition, 78, 27–40.
47. Imbo, I., Vandierendonck, A. (2007): The development of strategy use in elementary school children: Working memory and individual differences. Journal of Experimental Child Psychology, 96, 284–309.
48. Józsa Krisztián (2003): A számolási készség fejlesztése. In: Dubiczné Mile Katalin és Farkas Istvánné (szerk.), Az általános iskola alapozó szakaszának megújítása. Székesfehérvár, Fejér Megyei Pedagógiai Szakmai és Szakszolgáltató Intézet, 27–44.
49. Kanayet, F., Opfer, J. E. (2009): Why children's number-line estimates follow Fechner's law. In: N. Taatgen, H. van Rijn (eds), Proceedings of the XXXI Annual Cognitive Science Society. Mahwah, NJ, Erlbaum.
50. Kaufman, E. L., Lord, M. W., Reese, T. W., Volkmann, J. (1949): The discrimination of visual number. American Journal of Psychology, 62, 498–525.
51. Kaufmann, L., Nuerk, H-C. (2005): Numerical development: Current issues and future perspectives. Psychology Science,42, 142–170.
52. Laski, E. V., Siegler, R. S. (2007): Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 76, 1723–1743.
53. Lee, K. M., Kang, S. Y. (2002): Arithmetic operation and working memory: Differential suppression in dual tasks. Cognition, 83, 63–68.
54. Lemaire, P., Fayol, M., Abdi, H. (1991): Associative confusion effect in cognitive arithmetic: Evidence for partially autonomous processes. European Bulletin of Cognitive Psychology, 11, 587–604.
55. Lemaire, P., Siegler, R. S. (1995): Four aspects of strategic change: contributions to children's learning of multiplication. Journal of Experimental Psychology: General, 124 (1), 83–97.
56. Márkus Attila (2007): Számok, számolás, számolászavarok. Budapest, Pro Die Kiadó.
57. McCloskey, M. (1992): Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition, 44, 107–157.
58. Mix, K. S. (1999): Preschoolers’ recognition of numerical equivalence: sequential sets. Journal of Experimental Child Psychology, 74, 309–332.
59. Moeller, K., Klein, E., Fischer, M. H., Nuerk, H-C., Willmes, K. (2011): Representation of multiplication facts – Evidence for partial verbal coding. Behavioral and Brain Function, 7, 1–9.
60. Moyer, R. S., Landauer, T. K. (1967): Time required for judgments of numerical inequalities. Nature, 215, 1519–1520.
61. Opfer, J. E., Siegler, R. S. (2007): Representational change and children's numerical estimation. Cognitive Psychology, 55, 169–195.
62. Osborne, R. T., Lindsey, J. M. (1967): A longitudinal investigation of change in the factorial composition of intelligence with age in young school children. Journal of Genetic Psychology, 110, 49–58.
63. Pesenti, M., Thioux, M., Seron, X., De Volder, A. (2000): Neuroanatomical substrate of Arabic number processing, numerical comparison and simple addition: A PET study. Journal of Cognitive Neuroscience, 12 (3), 61–479.
64. Piaget, J. (1952): The Child's Conception of Number. London, Routledge & Kegan Paul.
65. Pica, P., Lemer, C., Izard, V., Dehaene, S. (2004): Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499–503.
66. Potter, M. C., Levy, E. I. (1968): Spatial enumeration without counting. Child Development, 39, 265–272.
67. Rubinstein, O., Henik, A., Berger, A., Shahar-Shalev, S. (2002): The development of internal representations of magnitude and their association with arabic numerals. Journal of Experimental Child Psychology, 81, 74–92.
68. Sekular, R., Mierkiewicz, D. (1977): Children's judgment of numerical inequality. Child Development, 48, 630–633.
69. Shrager, J., Siegler, R. S. (1998): SCADS: A model of children's strategy choices and strategy discoveries. Psychological Science, 9, 405–410.
70. Siegler, R. S. (1988a): Strategy choice procedures and the development of multiplication skill. Journal of Experimental Psychology: General, 117, 258–275.
71. Siegler, R. S. (1988b): Individual differences in strategy choices: good students, not-so-good students, and perfectionists. Child Development, 59 (4), 833–851.
72. Siegler, R. S. (1996): Emerging Minds: The process of change in children's thinking. Oxford University Press.
73. Siegler, R. S. (1999): Strategic development. Trends in Cognitive Sciences, 3 (11), 430–435.
74. Siegler, R. S., Booth, J. L. (2004): Development of numerical estimation in young children. Child Development, 75, 428–444.
75. Siegler, R. S., Jenkins, E. (1989): How Children Discover New Strategies. Hillsdale, NJ, Lawrence Erlbaum Associates.
76. Siegler, R. S., Opfer, J. E. (2003): The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243.
77. Siegler, R. S., Shipley, C. (1995): Variation, selection, and cognitive change. In: T. Simon, G. Halford (eds), Developing Cognitive Competence: New approaches to process modeling. Hillsdale, NJ, Erlbaum, 31–76.
78. Soltész Fruzsina (2010): Typical and atypical development of magnitude processing. Ph.D. Thesis, ELTE, Budapest.
79. Song, M. J., Ginsburg, H. P. (1987): The development of informal and formal mathematical thinking in Korean and U. S. children. Child Development, 58, 1286–1296.
80. Spelke, E. S., Tsivkin, S. (2001): Language and number: A bilingual training study. Cognition, 78, 45–88.
81. Stazyk, E. H., Ashcraft, M. H., Hamann, M. S. (1982): A network approach to simple mental multiplication. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, 320–335.
82. Temple, E., Posner, M. I. (1998): Brain mechanisms of quantity are similar in 5-year-olds and adults. Proceedings of the National Academy of Sciences USA, 95, 7836–7841.
83. Tóth Dénes , Csépe Valéria (2008): Azolvasás fejlődésekognitív pszichológiaiszempontból. Pszichológia, 28 (1), 35–52.
84. Vandenberg, S. G. (1962): The hereditary abilities study: Hereditary components in a psychological test battery. American Journal of Human Genetics, 14, 220–237.
85. Vandenberg, S. G. (1966): Contributions of twin research to psychology. Psychological Bulletin, 66, 327–352.
86. Wynn, K. (1990): Children's understanding of counting. Cognition, 36, 155–193.
87. Xu, F., Spelke, E. S., Goddard, S. (2005): Number sense in human infants. Developmental Science, 8, 88–101.
88. Zhou, X., Booth, J. R., Lu, J., Zhao, H., Butterworth, B., Chen, C., Dong, Q. (2011): Age-independent and age-dependent neural substrate for single-digit multiplication and addition arithmetic problems. Developmental Neuropsychology, 36 (3), 338–352.
89. Zhou, X., Chen, C., Zang, Y., Dong, Q., Chen, C., Qiao, S. (2007): Dissociated brain organizations for single-digit addition and multiplication. NeuroImage, 35, 871–880.