View More View Less
  • 1 Tokyo Metropolitan University Department of Chemistry, Faculty of Science Fukasawa, Setagaya 158 Tokyo (Japan)
Restricted access


Mass yield curves of spontaneous fissions, thermal-neutron induced fissions, monochromatic-neutron and proton induced fissions of actinides are reviewed. Mean masses of light and heavy asymmetric mass yield peaks are listed. The subtle change of the shape of the asymmetric heavy peak is expressed in terms of the parameters of two Gaussians that fit the observed data well. One Gaussian is narrow in width and always peaks at A=133–136 while the other is broader and peaks at A=140–144. The FWHM of the heavy asymmetric peak becomes minimum for the fissioning mass A=240–245. An analysis of the projectile energy dependence of mass yield curves indicated, at least, two distinctively different behaviors, one for asymmetric products and the other for symmetric products. From the energy dependence of the peak-to-valley rations, the extra-energy required for symmetric mass division, or the difference in the fission barrier heights, in the nomeuclature of the two-mode hypothesis, is deduced for a wide range of fission nuclides.

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)