View More View Less
  • 1 Institut de Physique Nucléaire Groupe de Radiochimie 91406 Orsay France
  • | 2 Institute of Physical Chemistry of the Academy of Sciences of USSR Leninsky prospekt, 31 117915 Moscow USSR
Restricted access


Electrochemical reduction of heavy elements from aqueous solution to amalgams was studied by radiopolarography and radiocoulometry. Mechanism of actinide reduction on a mercury pool is discussed through simulation techniques. Special emphasis is placed on redox reactions and potentials, kinetics of the process and effect of acetate and citrate ions as complexing agents. Three groups of actinides have been found. The first group represents actinium and from uranium to berkelium. Reduction occurs in the experimental conditions via an irreversible 3–0 process. The second group consists of the elements from fermium to nobelium, which are reduced in non-complexing solutions, or with acetate ions, similarly as barium and radium, via a reversible 2–0 reaction. Finally, californium and einsteinium behave as intermediate elements. It is noticeable that such groups are also observed in the actinide series by studying the structure of the trivalent aqua ions. On the basis of the above mentioned investigations of actinides and lanthanides several examples of electrochemical application are presented. Californium has been separated from preceding transuranium and lanthanide elements (except europium) by electrochemical reduction to amalgams in acetic solution. Separation factors from 25–90 are achieved with appropriate cathodic potentials. Similarly, this element could be separated from several heavier actinides with citric media. The electrochemical preparation of mixed uranium-nickel and uranium-tin amalgams from aqueous acetate solutions is investigated. The dependence of redox potentials of mixed amalgams on different atomic ratio UNi and USn in amalgams is measured. The large shift of redox potentials of mixed amalgams to the positive direction is detected when the atomic ratio UNi or USn in amalgams reaches 15. The thermal distillation of mercury from mixed amalgams with different UNi and USn atomic ratios was carried out and the products were identified by chemical analysis and X-ray diffraction. The intermetallics UNi5 and USn3 were prepared from mixed amalgams with the atomic ratios UNi=15 and USn=13. The uranium and neptunium amalgams are prepared by electrolysis of aqueous acetate solutions and are processes into metals or nitrides U2N3, NpN by thermal distillation of mercury in vacuum or in nitrogen atmosphere.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)