View More View Less
  • 1 Meiji University Department of Agricultural Chemistry, Faculty of Agriculture Higashimita, Tama 214 Kawasaki (Japan)
  • 2 Tokyo Metropolitan University Department of Chemistry, Faculty of Science Fukasawa, Setagaya 158 Tokyo (Japan)
Restricted access


Previously, the use of an enriched stable isotope as an activatable yield tracer in preconcentration steps has been tested by use of commercially available enriched116Cd and156Dy for biological standard reference materials.1,2 In the present work, this method has been further applied to the determination of lanthanoid contents in various kinds of samples: one coal fly-ash, three Japanese standard rocks, and eight standard soils. Samples were decomposed by alkali fusion in the preconcentration step. Thirteen elements were determined for coal fly-ash and soil samples, and 14 elements for rocks. The data obtained for coal fly-ash and standard rocks are compared with the data reported in literature. The data for soil samples have been newly determined in the present work. The ordinary instrumental neutron activation analysis and radiochemical neutron activation analysis were also performed to confirm the accuracy and usefulness of the present method.