View More View Less
  • 1 Jagiellonian University Isotope Laboratory (Laboratory of Nuclear Chemistry), Faculty of Chemistry Kraków (Poland)
Restricted access

Abstract  

The13C kinetic isotope fractionation in the decarbonylation of lactic acid of natural isotopic composition by sulfuric acid has been studied in the temperature range of 20–80°C. The13C(1) isotope separation in the decarbonylation of lactic acid by concentrated sulfuric acid depends strongly on the temperature above 40°C. Below this temperature the13C isotope effect in the decarbonylation of lactic acid by concentrated sulfuric acid is normal similarly as has been found inthe decarbonylation of lactic [1-14C] acid. The experimental values of k(12C)/k(13C) ratios of isotopic rate constants for12C and13C are close to, but slightly higher than theoretical13C-kinetic isotope effects calculated (neglecting tunneling) under the asumption that the C(1)-OH bond is broken in the rate-controlling step of the dehydration reaction. Dilution of concentrated sulfuric acid with water up to 1.4 molar (H2O)/(H2SO4) ratio caused the increase of the13C isotope fractionation from 1.0273 found in concentrated sulfuric acid at 80.5°C to 1.0536±0.0008 (at 80.6°C). A discussion of the abnormally high temperature dependence of14C and13C isotope fractionation in this reaction and the discussion of the problem of relative14C/13C kinetic isotope effects is given.