Authors:
Malik Ishfaq Pakistan Institute of Nuclear Science and Technology Nuclear Chemistry Division p.O. Nilore Islamabad (Pakistan)

Search for other papers by Malik Ishfaq in
Current site
Google Scholar
PubMed
Close
,
H. Karim Pakistan Institute of Nuclear Science and Technology Nuclear Chemistry Division p.O. Nilore Islamabad (Pakistan)

Search for other papers by H. Karim in
Current site
Google Scholar
PubMed
Close
, and
M. Khan University of The Punjab Institute of Chemistry Lahore (Pakistan)

Search for other papers by M. Khan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Adsorption of cesium from aqueous solutions on potassium copper nickel hexacyanoferrate(II) (KCNF) has been investigated in batch experiments and optimized as a function of concentration of acids, salts and adsorbate using a radiotracer technique. The results are presented in terms of distribution coefficient, Kd (ml·g–1). The uptake of cesium obeys a Freundlich adsorption isotherm over the concentration range of 3.7 to 37 mmol·l–1 with b values of 0.77, 0.68 and 0.56 at temperatures of 293, 313, 333 K, respectively. The Langmuir adsorption isotherm is followed in the concentration range of 15 to 75 mmol·l–1 in the same temperature range. The values of limiting adsorption concentration (Cm) have been found to be 2.58, 2.44 and 2.32 mmol·g–1. The heat of adsorption was calculated as 26.43 kJ·mol–1. The influence of a number of anions and cations on cesium retention has also been studied. Column experiments have been performed and breakthrough have been obtained under different operating conditions. The low cesium capacity of 1.1 mmol·g–1 has been obtained under dynamic conditions as compared to batch experiments. Desorption of cesium from the column has been achieved (45.4%) by nitric acid solution of 8M concentration at a flow rate of 0.5 ml·min–1.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)