Authors:
J. Kuruc Comenius University Department of Nuclear Chemistry, Faculty of Natural Sciences 842 15 Bratislava (Slovak Republic)

Search for other papers by J. Kuruc in
Current site
Google Scholar
PubMed
Close
and
M. Sahoo Comenius University Department of Nuclear Chemistry, Faculty of Natural Sciences 842 15 Bratislava (Slovak Republic)

Search for other papers by M. Sahoo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Various volatile products formed in the -radiolysis of water-nitrobenzene-carbon tetrachloride two phase systems have been identified using GC-MS and GC-FTIR systems. The conditions for the separation of the products are described in detail. It was found that product formation is dependent on the composition of the systems. In case when the volume ratio of carbon tetrachloride is higher, chlorobenzene appears to be one of the major radiolytic products. This means that substitution of the nitro group by chlorine atom occurs in the presence of water. Substitution of the nitro group and hydrogen atom by chlorine atom and/or HO free radical is also observed, depending on the composition of the mixture. Formation of phenyl isocyanate is proposed to be the result of interaction of dichlorocarbene and nitrobenzene. The mechanism of some main product formation is described briefly.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)