View More View Less
  • 1 Philipps-Universität Kernchemie, F.B. 14 Marburg Germany
  • | 2 Joint Institute for Nuclear Research Laboratory for High Energies Dubna Russia
  • | 3 North-Eastern Hill University Department of Chemistry Shillong India
  • | 4 University of California Nuclear Science Division, Lawrence Berkeley Laboratory Berkeley CA USA
  • | 5 China Institute of Atomic Energy Beijing China
  • | 6 Gesellschaft für Nuklear Service m.b.H. GNS Essen Germany
  • | 7 China Institute of Atomic Energy Section of Technical Research for Nuclear Safeguards, Department of Radiochemistry Beijing China
Restricted access

Abstract  

An extended Cu-target was irradiated with 22 and 44 GeV carbon ions for about 11.3 and 14.7 hours, respectively. The upper side of the target was in contact with a paraffin-block for the moderation of secondary neutrons. Small holes in the moderator were filled with either lanthanum salts or uranium oxide. The reaction
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${}^{139}La(n,\gamma ){}^{140}La\mathop \to \limits^{\beta - }$$ \end{document}
was studied via the decay of140La(40h) using radiochemical methods, as has been published. The reaction
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${}^{238}U(n,\gamma )^{239} U\mathop \to \limits^{\beta - } {}^{239}Np\mathop \to \limits^{\beta - }$$ \end{document}
was studied via the decay of239Np(2.3 d) as well as the reaction U(n,f) using radiochemical methods. In addition, solid state nuclear track detectors were used for fission studies in gold. The yields for the formation of (n,) products agree essentially with other experiments on extended targets carried out at the Dubna Synchrophasotron (LHE, JINR). To a first approximation, the breeding rate of (n, ) products doubles when the carbon energy increases from 22 to 44 GeV. If, however, results at 44 GeV are compared in detail to those at 22 GeV, we observe an excess of (37±9)% in the experimentally observed239Np-breeding rate over theoretical estimations. Experiments using solid state nuclear track detectors give similar results. We present a conception for the interpretation of this fact: There is the evident connection between anomalies we observe in the yield of secondary particles in relativistic heavy ion interactions above a total energy of approximately 30–35 GeV and increased yield of neutrons in this energy region.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)