View More View Less
  • 1 Chung buk National University Department of Chemistry, College of Natural Sciences 360-763 Cheongju Republic of Korea
  • | 2 Korea Atomic Energy Research Institute Division of Chemical Analysis Yousung P. O. Box 105 Taejeon Republic of Korea
Restricted access

Abstract  

The chromatographic separation of lithium isotopes was investigated by chemical exchange with the recently synthesized polymer-bound dibenzo pyridino diamide azacrown (DBPDA) and reduced dibenzo pyridino diamide azacrown (RDBPDA). Column chromatography was employed for the determination of the effect of solvents and ligand conformation on the separation coefficients. The maximum separation coefficients, , for the DBPDA and RDBPDA at 20.0±0.02°C with acetonitrile as eluent, were found to be 0.034±0.002 and 0.035±0.002, respectively. The isotope separation coefficient and adsorption capability of the lithium ion on the DBPDA and RDBPDA were only slightly dependent on ligand structure, but strongly dependent on the solvent. DBPDA and RDBPDA appeared to have almost the same value for the isotope separation coefficient of lithium.

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)