Author: Y. Kondo 1
View More View Less
  • 1 Japan Atomic Energy Research Institute Department of Chemistry and Fuel Research, Tokai Research Establishment Tokai-mura 319-11 Naka-gun, Ibaraki-ken Japan
Restricted access

Abstract  

Precipitate formation behavior in high-level liquid waste (HLLW) and its filtration characteristics were examined experimentally, using a simulated HLLW. The amount of precipitate formed by denitration became minimum, only at about 5% of Mo, Zr, Te and Ru, if the simulated HLLW was pre-heated until the total heat input exceeded 7.9·106 J/I HLLW before denitration or denitrated with the total heat input of more than 1.1·107 J/I HLLW. Under these conditions, a needle-shaped precipitate with 0.51.0 m diameter and 35 m length was formed. This precipitate can be separated easily by vacuum filtration. While, fine particles of about 0.1 m diameter were precipitated during denitration, if the simulated HLLW was denitrated under the conditions the amount of newly formed precipitate was not minimum. It was difficult to separate the fine particles by vacuum filtration.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)