Authors:
K. Huysmans Ghent University Institute for Nuclear Sciences Ghent Belgium

Search for other papers by K. Huysmans in
Current site
Google Scholar
PubMed
Close
,
R. Gijbels Ghent University Institute for Nuclear Sciences Ghent Belgium

Search for other papers by R. Gijbels in
Current site
Google Scholar
PubMed
Close
, and
J. Hoste Ghent University Institute for Nuclear Sciences Ghent Belgium

Search for other papers by J. Hoste in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The accuracy of the live-time circuit of a 400-channel analyzer was studied in detail, and was found to be unsatisfactory even for long-lived radionuclides. It was found that automatic live-time correction with the multi-channel analyzer gave rise to increasing positive errors with increasing count rate; this overall positive error was composed of a positive error due to the slowness of the electronic circuitry, and a smaller negative error due to the finite pulse-width. Adequate correction could be performed by feeding the information from the dead-time output of the multi-channel analyzer to an external live-time circuit with variable oscillator frequency and pulse-width. Four methods for dead-time correction were compared experimentally in the case of short-lived radionuclides (T as low as 7 sec): the method of Bartošek et al., the method of Schonfeld, the use of a sufficiently short counting time as compared to the half-life, and the live-time mode of counting without additional correction. These four methods were applied to the determination of oxygen and silicon in rocks by 14 MeV neutron activation analysis. Results are given for USGS standard rock G-2.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)