View More View Less
  • 1 Indian Institute of Technology Department of Chemistry 600 036 Madras India
  • | 2 The University of Southern Mississippi Department of Polymer Science 39406 Hattiesburg MS USA
Restricted access

Abstract  

Electronspin resonance (ESR) studies of -irradiated LaNiO3 revealed the formation of chemisorbed superoxide ion (O 2 ) and F centers (electrons trapped in anion vacancies). X-ray photoelectron spectroscopy (XPS) showed that the -irradiation of LaNiO3 in the presence of moisture leads to the reduction of the transition metal (Ni3+ to Ni2+) which in turn facilitates the formation of O 2 and surface carbonate species (CO 32– ). A qualitative molecular orbital model has been proposed for the chemisorption of O 2 on the reduced transition metal centers (Ni2+). The hydrated electron generated by the radiolysis of moisture reduces the transition metal. Gamma-irradiated LaNiO3 shows enhanced catalytic activity for the decomposition of hydrogen peroxide (H2O2) and the increase in catalytic activity is attributed to the reduced metal content. The formation of chemisorbed oxygen decreases the electrical conductivity by trapping the charge carriers.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)