Authors:
S. Jovanović University of Montenegro Faculty of Sciences Cetinjski put bb 81000 Podgorica Yugoslavia

Search for other papers by S. Jovanović in
Current site
Google Scholar
PubMed
Close
,
A. Dlabač University of Montenegro Faculty of Sciences Cetinjski put bb 81000 Podgorica Yugoslavia

Search for other papers by A. Dlabač in
Current site
Google Scholar
PubMed
Close
,
N. Mihaljević University of Montenegro Faculty of Sciences Cetinjski put bb 81000 Podgorica Yugoslavia

Search for other papers by N. Mihaljević in
Current site
Google Scholar
PubMed
Close
, and
P. Vukotić University of Montenegro Faculty of Sciences Cetinjski put bb 81000 Podgorica Yugoslavia

Search for other papers by P. Vukotić in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

A broadly applicable, flexible and user-friendly PC-code (ANGLE) for calculations of semiconductor detector full energy peak efficiencies (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline {(\Omega )}$$ \end{document}
. Written in Pascal, and operating in windows and menus data manipulation mode, ANGLE yields the efficiencies for: (1) HPGe true- and closed-end coaxial (bothn- andp-types), (2) Ge(Li) open- and closed-end, (3) planar LEPD and (4) well-type detectors. Supposing coaxial positioning, cylindrical or Marinelli sources can be treated, regardless of their dimensions (this includes point, disk and ring sources, bulky samples and infinite geometrics). Possible displacement between source and detector axes is treated in our another work, relative to this one. ANGLE input parameters are: (1) reference efficiency curve for the detector used (i.e., efficiency vs. -energy for calibrated point sources at a reference distance), (2) detector type and configuration (active body and inactive layers, end cap, windows, housing, shielding, (3) source data (dimension and composition of both container and active material), (4) source-detector geometry (distance, intercepting layers and their composition) and (5) some computational data (Gauss integration coefficients). Gamma-attenuation is calculated upon an extensive (per element and per energy) data file. In the output, efficiency vs. -energy is found, both in forms of tables and graphs. In routine applications accuracies of 3–4% are achieved (not worse than 7% for the most unfavourable geometries). Computation times when using recent PC models are of the order of minutes. ANGLE frame is also easily adjustable to other semiempirical or Monte Carlo models for efficiency calculations.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)