Authors:
A. Saidel National Institute for Research and Development of Physics and Nuclear Engineering “Horia Hulubei” P.O. Box Mg-6 R-76900 Bucharest-Magurele Romania

Search for other papers by A. Saidel in
Current site
Google Scholar
PubMed
Close
and
C. Turcanu National Institute for Research and Development of Physics and Nuclear Engineering “Horia Hulubei” P.O. Box Mg-6 R-76900 Bucharest-Magurele Romania

Search for other papers by C. Turcanu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Thermal gravimetric (TG) and differential thermal (DTA) analyses were performed to characterize the thermal behavior and the stoichiometry of uranyl bis-1,3-diketonate complexes (R1COCR2COR3)2 UO2x H2O, where R1,3=CH3; C2H5; C6H5; CF3; pNO2−C6H4; pCl−C6H4; pMe−C6H4; NH−C6H5; R2=H, C6H5 andx=1; 2. Based on the data obtained, a thermal degradation mechanism for each complex was proposed. The final degradation product for all studied complexes was U3O8 oxide. The temperature of the first organic fragment rupture including the U-O (ligand) bond was taken as criterion for the thermal stability of the metal-oxygen donor bond in these complexes. The observed stability order is in good agreement with the IR determined constant force values,k, of the U-O (ligand) bond.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)