View More View Less
  • 1 Institute of Chemical Technology Department of Analytical Chemistry Technická 5 166 28 Prague 6 Czech Republic
  • | 2 Institute of Chemical Technology Department of Analytical Chemistry Technická 5 166 28 Prague 6 Czech Republic
Restricted access

Abstract  

The conditions for the synthesis of rhenium compounds (pH, reaction time, concentration of reducing agent) have been determined previously by thin-layer chromatography. A Britton-Robinson buffer solution has been selected as a carrier electrolyte due to its possible use in a wide interval of pH, mainly at optimal pH for the formation of the complexes studied. The same electrolyte has been previously applied also in case of the study of rhenium and technetium complexes by polarography. The electrophoretic experiments have been carried out under both standard and reverse polarities with direct UV detection at the wavelength 214 nm and 20 °C. The signal of perrhenate has been observed at the reverse polarity (outlet+, inlet–), of reduced rhenium [probably Re(IV)] under normal polarity. The formation of rhenium complexes with EDTA has been shown by lowering of the cationic rhenium signal due to the addition of the ligand. The rhenium complexes with EDTA are observable at reverse mode of CE. The formation of rhenium complexes with HEDP (hydroxyethylidenediphosphonic acid) has been studied in two different carrier electrolytes — 40 mM Britton-Robinson buffer solution and 50 mM phosphate buffer with 20 mM HEDP. The mechanism of perrhenate reduction by stannous chloride and of the formation of rhenium complexes with EDTA has been determined. The necessity of the presence of ascorbic acid as an antioxidant in the reaction mixture at different pH values has been described as well.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)