Authors:
E. Moody Los Alamos National Lab Nuclear Materials Technology Division Los Alamos NM 87545 USA

Search for other papers by E. Moody in
Current site
Google Scholar
PubMed
Close
,
M. Barr Los Alamos National Lab Nuclear Materials Technology Division Los Alamos NM 87545 USA

Search for other papers by M. Barr in
Current site
Google Scholar
PubMed
Close
, and
G. Jarvinen Los Alamos National Lab Nuclear Materials Technology Division Los Alamos NM 87545 USA

Search for other papers by G. Jarvinen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Computer-aided modeling has been very successful in the design of chelating ligands for the formation of selective metal complexes. We report herein preliminary efforts to extend the principles developed for ion-specific chelating ligands to the weaker, more diffuse electrostatic interactions between complex anions and dicationic sites of anion-exchange resins. We present formal- and partial-charge methodologies for determining calculated electrostatic affinity between plutonium(IV) hexanitrato dianions and free analogues of dicationic anion-exchange sites. Both approaches correlate well with empirically-determined distribution coefficients for our bifunctional pyridinium-based resins (0.65<r2<0.98). This quantitative structure activity relationship (QSAR) will be useful in the determination of which structural modifications within a select series of bifunctional resins are most likely to be advantageous. Ultimately, we hope to refine this methodology to allow the a priori determination of ion-exchange behavior for a broad class of materials.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)