View More View Less
  • 1 Korea Atomic Energy Research Institute 150 Dukjin-Dong Yuseong-Gu, Daejeon 305-353 Korea
Restricted access

Abstract  

Surface sorption experiments of U(VI) onto the surfaces of a Korean granite rock are carried out in order to investigate the kinetics and reversibility of U(VI) sorption as a function of pH and surface types such as fresh intact surfaces and natural fracture surfaces. It was shown that the effect of pH is significant in the sorption of U(VI) onto both types of the granite surfaces. However the sorption rates do not greatly depend upon the pH regardless of the surface types. A two-step first order kinetic behavior dominates onto both the intact surfaces and natural fracture surfaces of granite and that the linearization approach of the kinetic model agrees well with experimental sorption data. The desorption results showed that the sorption process of U(VI) was a little irreversible for the two types of granite surfaces regardless of pH and surface types. This kinetic approach could give a better understanding of U(VI) sorption onto granite surfaces depending on pH and surface types.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)