Authors:
M. El-Absy Atomic Energy Authority Hot Laboratories Center P. O. Code No. 13759 Cairo Egypt

Search for other papers by M. El-Absy in
Current site
Google Scholar
PubMed
Close
,
H. Aly Atomic Energy Authority Hot Laboratories Center P. O. Code No. 13759 Cairo Egypt

Search for other papers by H. Aly in
Current site
Google Scholar
PubMed
Close
,
M. Mousa Zagazig University Benha Branch Faculty of Science Benha Egypt

Search for other papers by M. Mousa in
Current site
Google Scholar
PubMed
Close
, and
M. Mostafa Zagazig University Benha Branch Faculty of Science Benha Egypt

Search for other papers by M. Mostafa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Fission-produced 131I and 103Ru radionuclides have been separated sequentially by distillation from H2SO4 of controlled chemical composition. The thermal-neutron irradiated uranium trioxide targets were digested in 2M NaOH solution and then, the supernatant solution was acidified to 20% H2SO4 with addition of a few drops of H2O2 solution. On boiling for 3.5 hours, ≥99.99%131I was volatilized, passed through 3M H2SO4 traps, and then collected in 0.1M NaOH + 0.01% Na2S2O3 solution with a recovery yield of 73.6%. The product radionuclide had high radiochemical and radionuclidic purities. After separation of 131I, the fission-product solution was acidified to 40% H2SO4 acid containing KMnO4 as an oxidant and boiled for 40 minutes. Ruthenium nuclides were volatilized and collected in 0.1M NaOH solution. Gamma-ray spectrometry showed that the separation and the recovery yields of 103Ru were ≥99.99 and 65%, respectively, with ~92% radionuclidic purity, measured immediately after separation. The radionuclides of 132I and 106Rh were the main contaminants detected in the obtained 103Ru product solution.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)