The influence of aqueous silica of two different physical forms (dissolved ions and SiO2 colloid) on the dissolution of UO2 nuclear fuel material was investigated at 95 °C temperature in autoclaves. It was tested that SiO2 colloids can contribute to the surface degradation or act as carrier for uranium ions during a near field geochemical dissolution process. In the presence of colloids, well-crystallized secondary phases containing U and Si were formed on the surfaces, the latter attacked by the treatment. This was not the case when dissolved Si was used. SiO2 colloids were partly found in their original form on the surfaces after 1000 hours at 95 °C. A surface charge model suggests that this different effects are due to the development of electrostatic interactions between the UO2 and SiO2 surfaces.