View More View Less
  • 1 491 Howard St., Northboro, MA, USA
  • | 2 National Institute of Standards and Technology Gaithersburg, MD, USA
  • | 3 National Institute of Standards and Technology Gaithersburg, MD, USA
  • | 4 U. S. Department of Energy, Office of International Health Programs Germantown, MD, USA
  • | 5 Los Alamos National Laboratory Los Alamos, NM, USA
  • | 6 Los Alamos National Laboratory Los Alamos, NM, USA
  • | 7 Los Alamos National Laboratory Los Alamos, NM, USA
  • | 8 Los Alamos National Laboratory Los Alamos, NM, USA
  • | 9 Lawrence Livermore National Laboratory Livermore, CA, USA
  • | 10 Lawrence Livermore National Laboratory Livermore, CA, USA
  • | 11 Lawrence Livermore National Laboratory Livermore, CA, USA
Restricted access

Summary  

As a follow up to the initial 1998 intercomparison study, a second study was initiated in 2001 as part of the ongoing evaluation of the capabilities of various ultra-sensitive methods to analyze 239Pu in urine samples. The initial study1 was sponsored by the Department of Energy, Office of International Health Programs to evaluate and validate new technologies that may supersede the existing fission tract analysis (FTA) method for the analysis of 239Pu in urine at the µBq/l level. The ultra-sensitive techniques evaluated in the second study included accelerator mass spectrometry (AMS) by LLNL, thermal ionization mass spectrometry (TIMS) by LANL and FTA by the University of Utah. Only the results for the mass spectrometric methods will be presented. For the second study, the testing levels were approximately 4, 9, 29 and 56 µBq of 239Pu per liter of synthetic urine. Each test sample also contained 240Pu at a 240Pu/239Pu atom ratio of ~0.15 and natural uranium at a concentration of 50 µBq/ml. From the results of the two studies, it can be inferred that the best performance at the µBq level is more laboratory specific than method specific. The second study demonstrated that LANL-TIMS and LLNL-AMS had essentially the same quantification level for both isotopes. Study results for bias and precision and acceptable performance compared to ANSI N13.30 and ANSI N42.22 have been compiled.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)