View More View Less
  • 1 Radiochemistry Laboratory, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, 730000, P.R. China
  • | 2 Radiochemistry Laboratory, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, 730000, P.R. China
  • | 3 Radiochemistry Laboratory, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, 730000, P.R. China
Restricted access

Summary  

The adsorption and desorption of Am(III) on a calcareous soil (sierozem) and its parent material (loess) were studied by batch technique. The molarities of the Am(III) aqueous solutions were less than 5 . 10-9 mol/l. High adsorbability was found of Am(III) on the calcareous soil and its parent material. In order to decrease the adsorption and, hence, to investigate the adsorption characteristics properly, stable Eu3+ as hold back carrier and analogue was added to the aqueous solution. The relative contributions of CaCO3, organic matter (OM) to the Am(III) adsorption on calcareous soil and its parent material were investigated. The adsorption and desorption isotherms of Am(III) on untreated soil and loess and the   three kinds of treated soils and three kinds of treated loesses to remove CaCO3, OM and both CaCO3 and OM were determined, respectively. It was found that all isotherms were linear, the average distribution coefficients (K-d) for the untreated soil and for the untreated loess were almost equal, while there was an obvious difference between the values of the average distribution coefficients (K-d) for the treated soil and the treated loess to remove CaCO3 or OM. The adsorption-desorption hysteresis on the untreated and treated soils and loesses actually occurred and there was an obvious difference between the hysteresis coefficients on both the corresponding treated soil and loess. It can be concluded that the adsorbability of Am(III) on calcareous soil is similar to that on its parent material, and that the contributions of CaCO3 and OM to the Am(III) adsorption by the untreated soil are different from those by the untreated parent material.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)