View More View Less
  • 1 NTT Photonics Laboratories, Nippon Telegraph and Telephone Corporation; Department of Material and Environmental Engineering, Hakodate National College of Technology Morinosato, Atsugi, Kanagawa, 243-0198 Japan; Tokura-cho 14-1, Hakodate, Hokkaido, 042-8501 Japan
  • | 2 NTT Photonics Laboratories, Nippon Telegraph and Telephone Corporation Morinosato, Atsugi, Kanagawa, 243-0198 Japan
  • | 3 NTT Photonics Laboratories, Nippon Telegraph and Telephone Corporation Morinosato, Atsugi, Kanagawa, 243-0198 Japan
  • | 4 Laboratory of Nuclear Science, Tohoku University Mikamine, Taihaku-ku, Sendai, 982-0826 Japan
  • | 5 Laboratory of Nuclear Science, Tohoku University Mikamine, Taihaku-ku, Sendai, 982-0826 Japan
  • | 6 Radiation Science Center, High Energy Accelerator Research Organization Tsukuba, 305-0801 Japan
Restricted access

Summary  

We have studied the photon activation analysis of carbon in InF3-based fluoride, chalcogenide and tellurite glasses for fiber amplifiers, and especially the nuclear interference from a matrix produced by (γ,n), (γ,2n), (γ,p) and (n,γ) reactions and a flow method for the rapid and simple separation of 11C. A chemical separation technique is indispensable for determining carbon, because seventeen radionuclides are observed in these glasses. The flow method can sequentially be undertaken, the fusion of an irradiated sample with an oxidizer, the conversion of 11C into 11CO2, and the absorption of 11C in ethanolamine solution. We used a mixture of Pb3O4 and B2O3 as the oxidizer. There is interference with the 11C measurement because 18F and 68Ga are produced in fluoride and chalcogenide glasses by the 19F(γ,n), 23Na(γ,αn) and 69Ga(γ,n) reactions, respectively, and also absorbed in ethanolamine solution. Therefore, this flow method can only be applied to tellurite glasses. The chemical yield provided by the flow method was close to 100% when determining carbon in Japanese Iron and Steel Certified Reference Materials (JSS) by using lithium carbonate as a standard sample. We determined that the carbon concentrations in four kinds of tellurite glass were 7 to 14 ppm.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)