Authors:
K. Norisuye Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan

Search for other papers by K. Norisuye in
Current site
Google Scholar
PubMed
Close
,
K. Okamura Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan

Search for other papers by K. Okamura in
Current site
Google Scholar
PubMed
Close
,
Y. Sohrin Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan

Search for other papers by Y. Sohrin in
Current site
Google Scholar
PubMed
Close
,
H. Hasegawa Faculty of Engineering, Kanazawa University Kakuma, Kanazawa 920-1192, Japan

Search for other papers by H. Hasegawa in
Current site
Google Scholar
PubMed
Close
, and
T. Nakanishi Faculty of Science, Kanazawa University Kakuma, Kanazawa 920-1192, Japan

Search for other papers by T. Nakanishi in
Current site
Google Scholar
PubMed
Close
Restricted access

Summary  

The present paper describes a new analytical method for determining the 240Pu/239Pu isotopic ratio and 238Pu/239+240Pu α -activity ratio in seawater, both of which are important parameters for determining Pu sources in the ocean. Plutonium isotopes were preconcentrated from a large volume of seawater (4700-10800 liter) by solid phase extraction using MnO2-impregnated fibers and eluted into 3M HCl. After the elution, the Pu species of all oxidation states were converted to Pu(IV) using NaNO2, purified by solvent extraction using thenoyltrifluoroacetone (TTA)-benzene, and concentrated in 5 ml of 0.2M HNO2. The 240Pu/239Pu and 238Pu/239+240Pu ratios in the 5-ml final solution were determined by inductively coupled plasma-mass spectrometry (ICP-MS) and α-spectrometry, respectively. A pg level of Pu, which was a sufficiently large amount for the determination, was obtained by the solid phase extraction. Through the redox conversion and solvent extraction, the Pu species, such as Pu(III), Pu(IV) and Pu(VI), were collected at a high recovery of 96±2% (n=3) despite the presence of large amounts of Mn, and interfering 238U (3.3 µg. l-1in seawater) was effectively removed with a decontamination factor of 1.7·107. The accuracy of the method for the 240Pu/239Pu ratio was verified using reference materials of seawater and a terrestrial soil sample. The present technique was applied to the determination of the 240Pu/239Pu and 238Pu/239+240Pu ratios in coastal and oceanic water.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)