Authors:
S. Aggarwal Bhabha Atomic Research Centre Fuel Chemistry Division Mumbai 400 085 India

Search for other papers by S. Aggarwal in
Current site
Google Scholar
PubMed
Close
,
D. Alamelu Bhabha Atomic Research Centre Fuel Chemistry Division Mumbai 400 085 India

Search for other papers by D. Alamelu in
Current site
Google Scholar
PubMed
Close
,
P. Shah Bhabha Atomic Research Centre Fuel Chemistry Division Mumbai 400 085 India

Search for other papers by P. Shah in
Current site
Google Scholar
PubMed
Close
, and
N. Mirashi Bhabha Atomic Research Centre Fuel Chemistry Division Mumbai 400 085 India

Search for other papers by N. Mirashi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Determination of 241Am/243Am ratios is required for vanous purposes including assay of Am by isotope dilution techniques. Alpha-spectrometry on electrodeposited sources is a preferred technique for this determination. However, there is an inherent problem of tail contribution which necessitates the use of suitable algorithms to account for the same. Recently, in the frame of a Coordinated Research Program (CRP) of the International Atomic Energy Agency (IAEA), WinALPHA software has been developed which is a combination of an asymmetrical Gaussian for the main part of the peak and a low energy function. Therefore, it was of interest to compare the use of this algorithm with the routinely used method, in our laboratory, based on geometric progression (G. P.) decrease. Since, there are no reference materials available commercially for 241Am/243Am ratios, synthetic mixtures covening a wide range (0.3 to 2.0) of 241Am/243Am α-activity ratios were used and un-ignited electrodeposited sources were prepared for α-spectrometry. The α-spectra obtained using PIPS detector, were evaluated using the two algonthms The 241Am/243Am α-activity ratios obtained were also compared with those determined by thermal ionization mass spectrometry (TIMS). An agreement of about 1% was obtained in the 241Am/243Am ratios determined by the two methods and also by using the two algorithms for α-spectrum evaluation.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)