View More View Less
  • 1 Zhejiang University College of Materials Science and Chemical Engineering 38 Zheda Road Hangzhou 310027 P.R. China
  • 2 Institute of Research and Innovation Nuclear Chemistry and Chemical Engineering Center 1201 Takada, Kashiwa Chiba 277-0861 Japan
Restricted access


A novel macroporous silica-based 2,6-bis(5,6-diisobutyl-1,2,4-triazine-3-yl)pyridine (iso-Bu-BTP), a neutral chelating agent having several softatom nitrogen, polymeric composite (iso-Bu-BTP/SiO2-P) was synthesized. It was done through impregnation and immobilization of iso-Bu-BTP molecule into the pores of SiO2-P particles with 40–60 μm of bead diameter and 0.6 μm of mean pore size. The effective impregnation resulted from the intermolecular interaction of iso-Bu-BTP and co-polymer inside the SiO2-P particles by a vacuum sucking technique. To understand the possibility of applying iso-Bu-BTP in the MAREC process developed, the adsorption behavior of a few representative rare earths (REs) such as Ce(III), Nd(III), Gd(III), Dy(III), Er(III), Yb(III), and Y(III) towards iso-Bu-BTP/SiO2-P was investigated at 298 K. The influence of the HNO3 concentration in a wide range of pH 5.52–3.0M and a few chelating agents such as formic acid, citric acid, and diethylenetriaminepentaacetic acid (DTPA) on the adsorption of RE(III) was examined. It was found that in the presence of chelating agent, the adsorption ability of the tested RE(III) towards iso-Bu-BTP/SiO2-P decreased due to two competition reactions of RE(III) with iso-Bu-BTP/SiO2-P and chelating agents. In a 0.01M HNO3 solution containing 1M formic acid or 1M citric acid, light RE(III) showed lower adsorption towards iso-Bu-BTP/SiO2-P than that of the heavy one. This makes the separation of light RE(III) from the heavy one possible. Based on the similarity of minor actinides and heavy RE(III) in chemical properties and the results of column separation experiments, chromatographic partitioning of light RE(III) from a simulated high level liquid waste solution composed of the heavy RE(III) and minor actinides in MAREC process is promising.