View More View Less
  • 1 Key Laboratory of Radiation Physics and Technology (Sichuan University) Ministry of Education Chengdu P.R. China
  • 2 Sichuan University Institute of Nuclear Science and Technology Chengdu 610064 P.R. China
  • 3 CAEP Institute of Nuclear Physics and Chemistry Mingyang 621900 P.R. China
Restricted access


As an important radioisotope in nuclear industry and other fields, 241Am is one of the most serious contamination concerns due to its high radiation toxicity and long half-life. The encouraging biosorption of 241Am from aqueous solutions by free or immobilized Saccharomyces cerevisiae (S. cerevisiae) has been observed in our previous experiments. In this study, the preliminary evaluation on mechanism was further explored via chemical or biological modification of S. cerevisiae, and using europium as a substitute for americium. The results indicated that the culture times of more than 16 hours for S. cerevisiae was suitable and the efficient adsorption of 241Am by the S. cerevisiae was able to achieve. The pH value in solutions decreased gradually with the uptake of 241Am in the S. cerevisiae, implying that H+ released from S. cerevisiae via ion-exchange. The biosorption of 241Am by the decomposed cell wall, protoplasm or cell membrane of S. cerevisiae was same efficient as by the intact fungus. However, the adsorption ratio for 241Am by the deproteinized or deacylated S. cerevisiae dropped obviously, implying that protein or carboxyl functional groups of S. cerevisiaece play an important role in the biosorption of 241Am. Most of the investigated acidic ions have no significant influence on the 241Am adsorption, while the saturated EDTA can strong inhibit the biosorption of 241Am on S. cerevisiae. When the concentrations of coexistent Eu3+, Nd3+ were 100 times more than that of 241Am, the adsorption ratios would decrease to 65% from more than 95%. It could be noted by transmission electron microscope (TEM) analysis that the adsorbed Eu is almost scattered in the whole fungus, while Rutherford backscattering spectrometry (RBS) analysis indicated that Ca in S. cerevisiae have been replaced by Eu via ion-exchange. All the results implied that the adsorption mechanism of 241Am on S. cerevisiae is very complicated and at least involved in ion exchange, complexation process as well as well as nonspecific adsorption in cell wall because of static electricity.