High energy medical linear accelerators (>10 MV) are increasingly used in radiotherapy. At such high photon energies neutron production via photonuclear reactions in the heavy elements which compose the linac head is inevitable. Neutrons from linacs can contribute to an additional dose to staff, patients and the general public. Our intention is two-fold; to provide shielding against the neutron contamination and to establish the depthdose curve of thermal neutrons within human tissue, with an aim to utilise linacs in boron neuron capture therapy (BNCT). In our studies neutron measurements were undertaken, with a Varian Clinac 2100C/D linear accelerator operating at 15 MV nominal energy, by irradiating 18 cm thick 30×30 cm2 block of tissue equivalent material. Measurements were taken using indium and aluminum activation foil at the centre of the block. Our results show that by leaving the linac jaws open neutron production is increased compared to the case when these are shut, for one minute exposure at 400MU. In this work we present a comparison between our results and existing literature and attempt to explore some sharp contrasts.