View More View Less
  • 1 Graduate Institute of Medicine, Chung Shan Medical University, Taichung, 40201 Taiwan ROC
  • | 2 School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, 40201 Taiwan ROC
  • | 3 School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, 40201 Taiwan ROC
  • | 4 National Tainan Institute of Nursing, Tainan, 70001 Taiwan ROC
  • | 5 Department of Medical Image, Chung Shan Medical University Hospital, Taichung, 40201 Taiwan ROC
  • | 6 Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, 40201 Taiwan ROC
Restricted access

Abstract  

Stray neutron distribution in a medical cyclotron vault room was evaluated by neutron activation analysis (NAA). Neutrons were generated in the production of radioactive nuclides, such as 18F, 11C, 13N and 15O, for diagnostic usage. Indium foil was adopted to evaluate the stray fast and thermal neutron intensity based on 115In(nf, n′)115mIn and 115In(nth, γ)116m1In reactions, respectively. The indium foils were weighed, sealed and placed at 62 points around the 6.7×8.2 m2 cyclotron room. Additionally, each indium foil was exposed for over 80 minutes during cyclotron operation and γ-peaks were analyzed using an HPGe detector to evaluate the number of stray fast (Φf) or thermal (Φth) neutrons. The minimum to maximum numbers of fast and thermal neutrons were (3.47±0.11)×103 to (1.06±0.21)×104 n·cm−2·s−1 and 9 to 965 n·cm−2·s−1, respectively. The minimum detectable limit for stray neutrons was included herein to demonstrate the reliability. Accordingly, 60 and two points, respectively, the confidence level associated with the reported intensities of fast and thermal neutrons reached 95%. The low qualified ratio in the evaluation of stray thermal neutrons might have been caused by either the high Compton scattering plateau or the low intensity of the gamma-ray peak in the relevant spectrum.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)