A series of rare-earth-doped sodium titanates with the chemical formula RxHyNa4 − (x+y)TiO4·nH2O (where R = Ce3+, Nd3+ and Sm3+) were grown employing solid-state fusion reaction technique. The physico-chemical investigations indicated that the new materials were self engineered into large particles enough to be used in sorption process and having crystalline structures containing localized Na+ ions. Equilibrium studies revealed that an enhancement in sorption efficiency of sodium titanate after rare-earth doping. The neodymium-rich sodium titanate exhibited a better exchange affinity for Cs+ compared to the other studied series. Data on the kinetics of cesium exchange fit well to pseudo-second order and intra-particle diffusion models. In a separate experiment, it was reported that the R-HNaTi series showed responsible sorption affinity toward Ce, Nd and Sm ions in their solution mixture with insignificant selectivity trend which reflects the high stability of titanate matrices.