Present investigation describes the development of a spectrophotometric method for trace level determination of U(VI) encountered during the process of nuclear fuel fabrication and reprocessing industries. A chromogenic reagent, 2-(5-bromo-2-pyridylazo-5-diethylaminophenol) (Br–PADAP) is used to complex with U(VI) under optimized solution conditions. The absoption maxima of the uranyl Br–PADAP complex at 578 nm is computed to be 73540 ± 1438 for U–Br–PADAP solution containing 20% ethanol (in aqueous sample media) and 58216 ± 1208 for U–Br–PADAP solution containing 80% ethanol (for organic sample media). Employing suitable sample treatment methods, the scope of analytical method has been widened to permit accurate determination of U(VI) in the samples with variation in the relative compositions of Th(IV), Pu(IV) and Fe(III). The method is applicable to samples matrices with, acidic, alkaline highly salted media. Effect of commonly associated ionic species on the optical density of U–Br–PADAP is determined. Depending on the extent of the interfering impurities present, the method permits estimation of U(VI) either direct or after its selective extraction into tri-octyl phosphine oxide dissolved in cyclohexane. The method is precise with <5% standard error and can be used for the estimation of uranium in organic as well as in aqueous samples. The method has been validated for quantitative determination of uranium extracted in the organic phase comprising of heavy metal extractants like TBP, HDEHP, PC-88A and Aliquot 336.