View More View Less
  • 1 Korea Atomic Energy Research Institute, Daejeon, 305-353 Korea
  • | 2 Department of Chemistry, Chungnam National University, Daejeon, 305-764 Korea
  • | 3 Department of Applied Chemical Engineering, Korea University of Technology and Education, Cheonan, 330-780 Korea
Restricted access


The spontaneous reduction of Eu3+ to Eu2+ was examined when EuCl3 was added into a pyroprocessing media of LiCl molten salt at 923 K. The amount of Eu2+ was calculated by measuring the total charge consumed to oxidize Eu2+ ions to Eu3+ ions. The concentration ratio of Eu2+ to Eu3+ was estimated to be about 0.40 in the media. In addition, it is confirmed that the reduction of Eu3+ to Eu2+ is caused by the oxidation power of Cl to Cl2. The coexistence of Eu3+ and Eu2+ in the LiCl molten salt system was examined by UV–Visible and luminescence spectroscopy. The molar absorptivities of Eu3+ and Eu2+, calculated from UV–Visible absorption spectra, were 423 and 1954 M−1 cm−1, respectively.