View More View Less
  • 1 Radiopharmaceutical Research and Development Lab (RRDL), Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339 Iran
  • | 2 Department of Engineering and Technical, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • | 3 Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 11365-8639 Iran
Restricted access

Abstract  

In this study, superparamagnetic iron oxide nanoparticles (SPION) embedded by folic acid (SPION-folate) were prepared by a modified co-precipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-folate were characterized systematically by means of XRD, VSM, HRSEM and TEM and the interaction between folate and iron oxide (Fe3O4) was characterized by FT-IR. The particle size was shown to be ≈5–10 nm. To ensure biocompatibility, the interaction of these SPION with mouse connective tissue cells (adhesive) was investigated using an MTT assay. Consequently, gallium-67 labeled nanoparticles ([67Ga]-SPION-folate) were prepared using 67Ga with a high labeling efficiency (over 96%, RTLC method) and they also showed an excellent stability at room temperature for at least 2 days and were evaluated for their biodistribution in normal rats up to 24 h compared with free Ga3+ cation and [67Ga]-SPION biodistribution. The biodistribution of the tracer among 3 other folate tracers were compared, showing lower liver uptake and higher blood circulation after 24 h leading to better bioavailability. The bone:muscle, kidney:muscle, lung:muscle, stomach:muscle ratios were 9.3, 9.32, 7.6 and 5.83 respectively. The developed folate-containing nano-system can be an interesting folate receptor tracer, capable of better cell membrane permeability while possessing paramagnetic properties for thermotherapy.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)