View More View Less
  • 1 Department of Applied Chemistry, School of Chemical Engineering and Technology, Harbin Institute of Technology, P.O. Box 410, Harbin, 150001 China
  • | 2 Nuclear Science and Technology Research Institute, NFCS, P.O. Box 11365/8486, Tehran, Iran
Restricted access


Multiwall carbon nanotubes (MWCNTs) were modified by nitric acid solution and then used to study the adsorption of cesium from aqueous solution using a batch technique under ambient conditions. As produced and oxidized MWCNTs were characterized by nitrogen adsorption/desorption, Boehm’s titration method and Fourier transform infrared spectroscopy. The physical properties of MWCNTs such as functional groups, total number of acid sites and specific surface area were greatly improved after oxidation, and these were responsible for more sorption of cesium from aqueous solution and made them more dispersible in water. The adsorption of cesium ions as a function of contact time, initial concentration of cesium, pH, ionic strength and oxidized MWCNT concentrations was also investigated. The results showed that cesium adsorption percentage strongly depended on the pH value, oxidized MWCNT content and on the solution ionic strength. Kinetic data indicated that the adsorption process achieved equilibrium within 80 min. Equilibrium data for as produced and oxidized MWCNTs was well described by both Freundlich and Langmuir isotherms. The dominant mechanism of cesium adsorption on oxidized MWCNTs may be mainly attributed to ion exchange. This study suggests that oxidized MWCNTs can be a promising candidate for the removal of cesium from nuclear waste solution.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)