Type 304 stainless steel specimens artificially contaminated with CsCl solution were treated with KOH solution and KNO3 solution, respectively. Cs+ ion removal tests by a Q-switched Nd:YAG laser at 1064 nm at a given fluence of 57.3 J/cm2 were performed. The surface morphology and the relative atomic mole ratio of the specimen surface were investigated by SEM and EPMA. The order of Cs+ ion removal efficiency of laser was no-treatment < KOH < KNO3 during the 42 shots. From the investigation of XPS peaks around 532.7 and 292.9 eV, KNO3 on a surface of specimen was found to be fully decomposed during the laser irradiation. It was suggested that Cs2O particulates formed by the reaction between the reactive oxygen generated from the nitrate ion and Cs+ ion on the metal surface could be easily suspended. For the KOH system, FeOOH was formed during the laser irradiation and it changed into Fe2O3. It was also suggested that Cs2O particulates were formed by the reaction between the reactive oxygen generated from the decomposition of K2O and Cs+ ion on the metal surface..