d-glucosamine at concentration of certain range could kill tumor cells without influencing normal cells. There are also some reports on the antitumor activity of d-glucosamine and its derivatives in murine models. It was therefore postulated that d-glucosamine might have the potential to invade tumor cells. We designed and radiosynthesized a glucosamine derivative, N-(2-[18F]fluoro-4-nitrobenzoyl)glucosamine ([18F]FNBG([18F]7)). Evaluations in vitro and in vivo were performed on tumor bearing mice. Excitingly, the radiochemical purity of [18F]FNBG([18F]7) was 99%, and besides the best radiochemical yield was up to 35%. The best T/Bl (Tumor/Blood) and T/M (Tumor/Muscle) ratios of [18F]FNBG([18F]7) were 4.40 and 4.84. Although [18F]FNBG([18F]7) deserved further studies, the results revealed it might become a potential PET imaging agent for detecting tumors.