View More View Less
  • 1 Institute of Radiation Medicine, Anhui Medical University, Meishan Road 81, Hefei, 230032 Anhui, China
  • | 2 Department of Nuclear Medicine, The First Hospital Affiliated to Bengbu Medical College, Bengbu, 233004 Anhui, China
  • | 3 Department of Biology, Anhui Medical College, 230061 Hefei, People’s Republic of China
Restricted access

Abstract  

Oxidized multiwalled carbon nanotubes (MWCNTs) were characterized by SEM and FTIR. The sorption of Th(IV) on MWCNTs was studied as a function of contact time, pH, ionic strength, Th(IV) concentration and temperature. The results indicate that the sorption of Th(IV) on MWCNTs is strongly dependent on pH and weakly dependent on ionic strength. The sorption thermodynamics of Th(IV) on MWCNTs was carried out at 293.15, 313.15 and 333.15 K, respectively, and the thermodynamic parameters (standard free energy changes (ΔG0), standard enthalpy change (ΔH0) and standard entropy change (ΔS0)) were calculated from the temperature dependent sorption isotherms. The sorption of Th(IV) on MWCNTs is a spontaneous and endothermic process. The oxidized MWCNTs may be a promising candidate for the preconcentration and solidification of Th(IV), or its analogue actinides from large volumes of aqueous solutions.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)