View More View Less
  • 1 Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur, 401 504 India
  • | 2 Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 India
Restricted access


Release of long-lived radioactivity to the aquatic bodies from various nuclear fuel cycle related operations is of great environmental concern in view of their possible migration into biosphere. This migration is significantly influenced by various factors such as pH, complexing ions present in aquatic environment and sorption of species involving radionuclides on the sediments around the water bodies. 241/243Am are two major radionuclides which can contribute a great deal to radioactivity for several thousand years. In the present study, 241Am sorption on natural sediment collected from site near a nuclear installation in India, has been investigated under the varying conditions of pH (3–10) and ionic strength [I = 0.01–1 M (NaClO4)]. The sorption of Am increased with pH of the aqueous medium [10% (pH 2) to ~100% (pH 10)], which was explained in terms of the increased negative surface charge on the sediment particles. There was marginal variation in Am(III) sorption with increased ionic strength (within error limits) of the aqueous medium suggesting inner-sphere complexation/sorption process. Sediment was characterized for its elemental composition and structural phases using Energy Dispersive X-Ray (SEM-EDX) and X-Ray Diffraction (XRD) techniques. Zeta-potential measurement at I = 0.1 M (NaClO4) suggested that Point of Zero Charge (pHPZC) was ~2, indicating the presence of silica as major component in the sediment. Kurabtov plot using sorption data as a function of pH at fixed I = 0.1 M (NaClO4) indicated the presence of multiple Am(III) species present on the surface. Potentiometric titration of the suspension indicated the presence of mineral oxide like behavior and assuming a generic nature (≡XOH) for all types of surface sites, protonation–deprotonation constants and total number of sites have been obtained. The sorption data has been modeled using 2-pK Diffuse Double Layer Surface Complexation Model (DDL-SCM). ≡XOAm2+ has been identified as the main species responsible for the sorption profile.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0