View More View Less
  • 1 Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra, Ghana
  • | 2 South African Nuclear Energy Corporation, P.O. Box 582, Pretoria, 0001 South Africa
  • | 3 School of Nuclear and Allied Sciences, University of Ghana, Legon, Accra, Ghana
  • | 4 Centre of Applied Radiation Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046 Mmabatho, South Africa
Restricted access

Abstract  

The effectiveness of the neutralization process on heavy metals precipitated in sludge has been evaluated using instrumental neutron activation analysis (INAA) facilities at the South African Nuclear Energy Corporation (Necsa). The elemental concentrations of Th, Fe, Ag, Co, Cr, As, Au and K were reduced after the neutralization process with the exception of Mn and Sn which appeared to be enhanced by the neutralization process. Even though the neutralization process was targeted at the basic ferric arsenate compound, it was found to be effective in reducing other elemental concentrations. The variations in the geochemical compositions of the sulphidic ores during treatment at various stages also showed that physical processing stages do not significantly alter the elemental concentrations in the feed materials, however, the chemically active processing stages do. Also, the enhancement of the elements at the chemical stages depends on total quality control, where the application was not very repeatable the pattern of variation of elements at some stages was found to be irregular irrespective of the ore grade. The elements; Sn, Fe, Th, K, Au, Ag, As, Cr, and Co were enhanced in almost all the chemically active stages. Au was much more enhanced during flotation and bio-oxidation processes. Correlation analysis performed to determine the distribution patterns show that Fe, As, Ag and Co are geochemically associated and might be enriched simultaneously.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)