Authors:
H. Noori Faculty of Science, Department of Physics, Shahid Bahonar University of Kerman, Kerman, Iran

Search for other papers by H. Noori in
Current site
Google Scholar
PubMed
Close
and
A. Ranjbar Faculty of Science, Department of Physics, Shahid Bahonar University of Kerman, Kerman, Iran

Search for other papers by A. Ranjbar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Radon exhalation rate from various types of stones, used inside the living buildings, is a major factor for evaluation of the environmental radon level. To verify the significance and lethal impacts of this unknown and obscure source of radiation upon the people around the world, the exhaled radon gas concentrations from the rocks, granodiorite, granite, limestone and aragonite, and the effect of their block sizes on the exhalation rate, have been studied. The block samples, collected from their ores, were transferred to plastic containers in which the CR-39 detectors could properly be placed and air tightened, for concentration measurements. The results show the radon concentration of 7.4 ± 0.8, 6.6 ± 0.6, 0.08 ± 0.02 and 0.09 ± 0.02 kBq m−3 for granodiorite, granite, limestone and aragonite, respectively. The corresponding annual dose values in a closed environment are: 186 ± 20, 166 ± 15, 2.5 ± 1 and 2 ± 1 mSv y−1. These absorbed dose values indicate that granodiorite and granite when used inside the buildings could increase the risk of various cancers while aragonite and limestone have much lower risks and are recommended for use inside the buildings. The former ones when used in the closure areas remedial action should be implemented. The results do not show obvious dependence between the rock size of the samples and their radon exhalation rate.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)