View More View Less
  • 1 Key Laboratory for Attapulgite Science and Applied Technology of Jiangsu Province, Department of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003 People’s Republic of China
Restricted access


Batch sorption experiments were performed to remove Eu(III) ions from aqueous solutions by using attapulgite under ambient conditions. Different experimental conditions, such as contact time, solid content, foreign ions, pH, ionic strength, fulvic acid and temperature, have been investigated to study their effect on the sorption property. The results indicated that the sorption of Eu(III) onto attapulgite was strongly dependent on pH, ionic strength and temperature. The sorption increased from about 8.9 to 90% at pH ranging from 2 to 6 in 0.01 mol/L NaNO3 solution. The Eu(III) kinetic sorption on attapulgite was fitted by the pseudo-second-order model better than by the pseudo-first-order model. The sorption of Eu(III) onto attapulgite increased with increasing temperature and decreasing ionic strength. The Langmuir and Freundlich models were used to simulate the sorption isotherms, and the results indicated that the Freundlich model simulated the data better than the Langmuir model. The thermodynamic parameters (∆Go, ∆So, ∆Ho) were determined from the temperature dependent isotherms at 298.15, 318.15 and 338.15 K, and the results indicated that the sorption reaction was an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Eu(III) from aqueous solutions.