View More View Less
  • 1 Nuclear Security Science and Policy Institute, Texas A&M University, 3473 TAMU, College Station, TX 77843-3743, USA
  • | 2 Center for Chemical Characterization and Analysis, Texas A&M University, 3144 TAMU, College Station, TX 77843-3144, USA
Restricted access


The dissolution of the Soviet Union coupled with the growing sophistication of international terror organizations has brought about a desire to ensure that a sound infrastructure exists to interdict smuggled nuclear material prior to leaving its country of origin. To combat the threat of nuclear trafficking, radiation portal monitors (RPMs) are deployed around the world to intercept illicit material while in transit by passively detecting gamma and neutron radiation. Portal monitors in some locations have reported abnormally high background counts. The higher background data has been attributed, in part, to the naturally occurring radioactive materials (NORM) in the concrete surrounding the portal monitors. Higher background increases the minimum detectable activity (MDA) and can ultimately lead to more material passing through the RPMs undetected. This work employed two different neutron activation analysis (NAA) methods for the purpose of developing a process to characterize the concrete surrounding the RPMs. Thermal neutron instrumental NAA (INAA) and fast NAA (FNAA) were conducted on six samples from three different composition concrete slabs. Comparator standards and quality control materials were used to help ensure that the methods were both precise and accurate. The combination of INAA and FNAA accounted for 84–100% of the total elemental composition of the samples. Knowing the composition of the concrete will allow RPM customers to choose suitable materials prior to installation, thereby increasing the ability of the monitors to detect radiological and nuclear materials.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)