View More View Less
  • 1 Department of Physics, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • | 2 Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Restricted access

Abstract  

This work concerns the study of Al–Ni bimetallic nanoparticles synthesized by gamma-radiolysis of aqueous solution containing aluminium chloride hexahydrate, nickel chloride hexahydrate, polyvinyl alcohol for capping colloidal nanoparticles, and isopropanol as radical scavenger. While the Al/Ni molar ratio is kept constant, size of the nanoparticles can be well controlled by varying the radiation dose. The products were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). Observations of UV–vis absorption spectra and TEM images showed that as the radiation dose increases from 50 to 100 kGy the particle size decreases and the number particles distribution increases. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation. The EDX and XRD analysis confirmed directly the formation of Al–Ni bimetallic nanoparticles in form of alloy nanoparticles.