Authors:
H. Seshadri Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam, 603 102 India

Search for other papers by H. Seshadri in
Current site
Google Scholar
PubMed
Close
and
P. Sinha Centralised Waste Management Facility, Bhabha Atomic Research Centre Facilities, Kalpakkam, 603 102 India

Search for other papers by P. Sinha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Degradation of ethylenediaminetetraacetic acid (EDTA) present in the liquid waste was demonstrated by photocatalytic oxidation route by using nanoparticles of anatase titania. Nano sized titania photocatalyst was synthesized using sol–gel method coupled with ultrasonication mode and characterized using X-ray diffraction, transmission electron microscope, BET, Fourier transform infrared spectroscopy and TG–DTA. A cylindrical photoreactor was employed for the degradation studies. Five milligram of the nano anatase TiO2 + 0.5 ml of 30% H2O2 were employed as catalysts for the degradation studies of 1,000 mg/L EDTA. EDTA degradation was followed by a complexometric titration method. Complete degradation of 1,000 mg/L EDTA could be achieved in 90 min and the photocatalytic efficiency of the synthesized titania photocatalyst was higher than that of P-25 TiO2 for EDTA degradation. The influence of pH on the degradation of EDTA follow the order acidic > neutral > alkaline. More than ten fold increases in the decontamination factors were obtained for the chemical precipitation step for the liquid waste containing degraded EDTA compared to liquid waste without EDTA degradation.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)