Authors:
You-Qun Wang

Search for other papers by You-Qun Wang in
Current site
Google Scholar
PubMed
Close
,
Zhi-bin Zhang

Search for other papers by Zhi-bin Zhang in
Current site
Google Scholar
PubMed
Close
,
Qin Li

Search for other papers by Qin Li in
Current site
Google Scholar
PubMed
Close
, and
Yun-Hai Liu

Search for other papers by Yun-Hai Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The ability of hexadecyltrimethylammonium cation pillared bentonite (HDTMA+-bentonite) has been explored for the removal and recovery of thorium from aqueous solutions. The adsorbent was characterized using small-angle X-ray diffraction, high resolution transmission electron microscopy and Fourier transform infrared spectroscopy. The influences of different experimental parameters such as solution pH, initial thorium concentration, contact time and temperature on adsorption were investigated. The HDTMA+-bentonite showed the highest thorium sorption capacity at initial pH of 3.5 and contact time of 60 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, ∆G° (298 K), ∆H° and ∆S° were determined to be −31.78, −23.71 kJ/mol and 27.10 J/mol K, respectively, which demonstrated the sorption process of HDTMA+-bentonite towards Th(VI) was feasible, spontaneous and exothermic in nature. The adsorption on HDTMA+-bentonite was more favor than Na-bentonite, in addition the saturated monolayer sorption capacity increased from 17.88 to 31.20 mg/g at 298 K after HDTMA+ pillaring. The adsorbed HDTMA+-bentonite could be effectively regenerated by 0.1 mol/L HCl solution for the removal and recovery of Th(VI). Complete removal (99.9 %) of Th(VI) from 1.0 L industry wastewater containing 16.8 mg Th(VI) ions was possible with 7.0 g HDTMA+-bentonite.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
1
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)