The mineral reevesite and the cobalt substituted reevesite have been synthesised and studied by thermal analysis and X-ray diffraction. The d(003) spacings of the minerals ranged from 7.54 to 7.95 Å. The maximum d(003) value occurred at around Ni:Co 0.4:0.6. This maximum in interlayer distance is proposed to be due to a greater number of carbonate anions and water molecules intercalated into the structure. This increase in carbonate anion content is attributed to an increase in surface charge on the brucite like layers. The maximum temperature of the reevesite decomposition occurs for the unsubstituted reevesite at around 220 °C. The effect of cobalt substitution results in a decrease in thermal stability of the reevesites. Four thermal decomposition steps are observed and are attributed to dehydration, dehydroxylation and decarbonation, decomposition of the formed carbonate and oxygen loss at ~807 °C. A mechanism for the thermal decomposition of the reevesite and the cobalt substituted reevesite is proposed.