Authors:
Ray Frost Queensland University of Technology Inorganic Materials Research Program, School of Physical and Chemical Sciences GPO Box 2434 Brisbane QLD 4001 Australia

Search for other papers by Ray Frost in
Current site
Google Scholar
PubMed
Close
and
Silmarilly Bahfenne Queensland University of Technology Inorganic Materials Research Program, School of Physical and Chemical Sciences GPO Box 2434 Brisbane QLD 4001 Australia

Search for other papers by Silmarilly Bahfenne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The thermal analysis of euchroite shows two mass loss steps in the temperature range 100–105 °C and 185–205 °C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot-stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH)·3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4·5H2O → arhbarite Cu2Mg(AsO4)(OH)3. HSRS inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm−1 assigned to the ν1 AsO43− symmetric stretching vibration and 801, 822, and 871 cm−1 assigned to the ν3 AsO43− (A1) antisymmetric stretching vibrations. A distinct band shift is observed upon heating to 275 °C. At 275 °C, the four Raman bands are resolved at 762, 810, 837, and 862 cm−1. Further heating results in the diminution of the intensity in the Raman spectra, and this is attributed to sublimation of the arsenate mineral. HSRS is the most useful technique for studying the thermal stability of minerals, especially when only very small amounts of mineral are available.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 7 0 0
May 2024 4 0 0
Jun 2024 10 0 0
Jul 2024 7 0 0
Aug 2024 10 0 0
Sep 2024 3 0 0
Oct 2024 0 0 0